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Chemistry Department, University of Ioannina, Ioannina, Greece 

Received 8 April 1986, in final form 30 June 1986 

Abstract. Regular comb polymers with excluded volume interactions are studied and 
compared with regular star and linear polymers. First-order calculations in the excluded 
volume parameter, at the critical dimensionality d = 4, yield the characteristic exponents 
of the macroscopic properties to order E =4-d.  The number of total configurations and 
the number of configurations with the backbone forming a ring are found. The evaluation 
of the mean end-to-end square distances of the backbone and the branches give an insight 
to the spatial distribution of the macromolecule. 

1. Introduction 

Previous studies on the excluded volume problem of polymers of various architectures 
(Miyake and Freed 1983, Vlahos and Kosmas 1984, Kosmas and Kosmas) are extended 
to include regular comb polymers, made from a backbone and f identical branches 
built at uniform intervals along the backbone (Berry and Orofino 1964, Berry 1971). 
The polymer chain (figure 1) consists of N segments, Nbb of which belong to the 
backbone and Nbr to each of the f branches, N = &,+fibr.  The contour lengths, 
proportional to the molecular weights of the chain, the backbone and the branch are 
NI, Nbbl and Nbrl, respectively, and the distance between two successive branches is 
a '= Nbbl/(f+ 1). Another characteristic quantity of combs is the ratio p = Nbr/Nbb 
of the lengths of the branch and the backbone and the two natural limits of linear 
( Nbr + 0) and regular star (Nbb' 0) chains are recovered as the limits of small and 
large values of p, respectively. 
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Figure 1. A regular comb polymer. Nhhl and Nh,l are the lengths of the backbone and a 
branch, respectively. a' is the distance between two successive branches. 
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A configuration of the chain in space is determined if all the N + 1 position vectors 
Ri ,  i = 1,2,  . . . , N +  1 of the ends of the segments are given. The probability P{R,} of 
the specific configuration { R i }  is given by 

where 

position 

is the probability of an ideal chain in the space of dimensionality d, with the summation 
running over all successive chain positions i, i’, ensuring the connectivity of the chain. 
The exponential term of ( 1 . 1 )  represents the two-body long-range interactions and 
U‘= 5 dr[exp(- V ( r ) / k T )  - 13 is the excluded volume parameter written in terms of 
the average two-body potential V ( r ) .  A prefactor f in the definition of U‘ is used for 
the proper counting of distinguishable pairs in the two-body interaction term of ( 1 . 1 ) .  
A convenient way, in the case of combs, of realising the summations of ( 1 . 1 )  is to 
employ another index m which describes whether the chain point lies on the backbone 
or  on one of the f branches. It takes the value 0 for the backbone points and the 
integer values from 1 to f for the points on the f branches, respectively. Each chain 
point is characterised by two indices m and i, the first one denoting whether it lies on 
the backbone or on one of the f branches and  the second denoting its exact position 
on the backbone or the branches. In this notation the double summation of ( 1 . 1 )  
becomes a summation over four indices, two, m and n, denoting whether the two 
points lie in the backbone or  the branches, and two, i and j, denoting the exact positions 
of the chain points: 

N + l  N t l  

i = l  j = l  m = O n = O  i J 

I f J  in the 
m.n set 

As in recent studies of star polymers (Vlahos and  Kosmas 1984), first-order calcula- 
tions in U ’  are made at the critical dimensionality d = 4 in order to describe basic 
macroscopic properties of combs. By means of the fixed point value U* = E /  16, E = 4 - d 
(Kosmas 1981), which is universal, not depending on the architecture of the chain, 
the characteristic exponents of the macroscopic properties of combs are found to order 
E. We thus study (in 0 2) the total number C of the configurations of the chain as 
well as the number U of the configurations with the comb backbone forming a ring. 
In the limit of large molecular weights the exponent v for the sizes of the various parts 
of the chain remains the same as that of linear chains. However, the present first-order 
calculations yield the results for smaller chains, permitting the study of the sizes of 
the various parts of the combs which give an insight to the spatial distribution of the 
macromolecule. We thus find, in § 3, the mean end-to-end square distance of the 
backbone (R’)bb and also those of the branches (R2)br,k ( k  = 1,2,  . . . ,f). Conclusions 
and  an  appendix follow. 
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2. The number C of total configurations and the number U of configurations with the 
backbone forming a ring 

The number C of total configurations is proportional to the configurational partition 
function. Employing the two indices for each position vector it can be evaluated from 
the probability, ( l . l ) ,  if we integrate over all position vectors R m i :  

/ . ~ ~ = ( d / 2 7 ~ 1 )  . ( 2 . 1 )  2 d / 2  c = /.LON 1 n IJ ddRmi P{Rmi) 
m i  

First-order calculations in U’ are made after P { R m i }  is approximated with its expansion 
form up to U ’  as 

in the 
m.n set 

Employing ( 2 . 2 )  in ( 2 . 1 )  we take for C the expression 

(2 .3)  
in  the 

m,n set 

where ( ) means an average with respect to the ideal probability P o { R m i } ,  equation 
( 1 . 2 ) .  The effect of the delta function is to bring in contact two points of the chain 
forming a loop with a probability of occurrence depending on the length of the loop, 

(2 .4)  

In the limit of large number of chain points, the i and j summations of equation (2 .3)  
can be approximated with integrations over the contour length of the chain. The two 
points of contact may belong to the backbone or the branches so that four different 
cases appear. In the first one both points belong to the backbone, in the second both 
points belong to the same branch, in the third, one is on the backbone and one on a 
branch while in the fourth case the two points belong to two different branches. If 
we use a full line to represent the backbone and broken lines to represent the branches, 
the four cases can be represented in a diagrammatic language as 

probability of a loop = ( d / 2 d  x length of 10op)~”. 

U = u ’ ( d / 2 1 r l ~ ) ~ ’ ~  

where the ( d / 2 7 ~ Z ’ ) ~ ’ ~ ,  factor in front of U ’  comes from the prefactor of the loop 
probability, equation (2 .4) ,  U is a dimensionless excluded volume parameter and the 
diagrams are defined to be dimensionless. The number 2 in front of the backbone 
diagram and the f branch diagrams is a symmetry number and comes from the fact 
that the cases i < j and i > j yield identical results. The number 2 at the third diagram 
comes from the double Z, X, summation which brings a branch into contact with the 
backbone twice. The forms of the diagrams can be found by means of the loop 
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probability, equation (2 .4) ,  and they are 

(2 .6a)  

(2 .6b)  

( 2 . 6 ~ )  
z .  

f f  ,'*\\, = I Nbr d i  Nbr d j  l / ( j +  i +  In - m l a ) d / 2 .  (2 .6d )  
m = l  n = l  0 0 

m # n  

The double summation over m and n in equation (2 .6d )  depends only on the difference 
m - n so it can be converted into a single summation over A = m - n. The final values 
of the diagrams are quoted in table 1 and a demonstration of their evaluation is given 

Table 1. The values of the diagrams for d = 4. 
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in the appendix, Using their values in equation (2 .5)  we obtain the following expression 
for C: 

C=pN{ l -u [2 ( f -1 ) ln  N+Fc(f ,p) l )  p = po e-”” (2.7a) 

where 

Fc(L p )  = -2(f- 1) In (1  + f ~ )  + 2f In P 
f + 2 

+2(f-A - 1 )  ln[p(f+ l)+A]} 

{-(f- A )  In [ 2p ( f+  1 )  + A ]  - (f- A - 2) In A 
A - 1  

(2.76) 

and p is the non-ideal value of p,, found as before (Kosmas 1981). For large molecular 
weights N in the region where In N >> F c ( f ,  p ) ,  Fc(f, p )  can be ignored as negligible 
and C behaves as a power law of the form C = pNNy-’. The exponent y can be 
determined from the coefficient of In N in equation (2.7~1) and the universal fixed 
point value U* = ~ / 1 6  which does not depend on the architecture of the chain: 

N + m  U* = ~ / 1 6  (2.8) 

(2.9) 

c = p ” - u * W - l )  = p ” ~ - l  

so that 

y = 1 - 2 ~ * ( f -  1 )  = 1 - (f- 1 ) ~ / 8 .  

y is a new exponent and characterises comb chains o f f  branches. For the chain 
without branches, f =  0, the case of the linear chain is obtained with y = 1 + E / %  For 
combs of one branch, f =  1, the exponent y = 1 does not depend to first order on E, 

and the case is close to that of an ideal chain. On increasingf the exponent y decreases 
showing a decrease of the number of total configurations C and a freezing of the 
macromolecule. This decrease of y goes for largef as the first power off and comparing 
the exponent y of combs, equation (2.9), with y = 1 - f ( f - 3 ) ~ / 1 6  of stars (Vlahos 
and Kosmas 1984), where the decrease of y goes as f’, we see that the freezing of 
stars is larger than that of combs. This is reasonable because stars, having all branches 
starting from a common origin, are of larger compactness than combs (Roovers 1979). 

Equation (2.7a) with F J f ,  p )  (equation (2.7b)) is a general expression and describes 
all regular combs of various f and p including linear and star chains which can be 
obtained from combs as the limits of small and large p respectively. In the limit of 
small p = &r/Nbb, the branch length N b r  is much smaller than the length N b b  of the 
backbone, Nbr<<  Nbb, and the backbone length approaches the total contour length of 
the chain Nbb-N. In this limit, l n p  =in  Nbr-ln Nbb’-ln &,--In N. In the 
expression of F,(f, p ) ,  equation (2.7b), only the second In p term survives, so that 

FJf; P )  = -2fIn N for small p, (2.10) 

Using this expression in equation (2.7a), the results of the linear chain are recovered: 

c = p N[l  + 2 u  In NI = p y = 1 + ~ / 8  for linear chains. 
(2.11) 

In the other limit of large p, Nbb is negligible, Nbr+ N / f  and In p = In N b r  - In N b b  + 

In Nbr-ln N-lnf-In N. In equation (2.76), in the limit of large p all the terms 
which have p in the In function yield In N while the rest of the terms are negligible. 
The summation over A is trivial and Fc(f, p )  becomes of the form 

(2.12) 

= p “7-l  

FAf, p> = U’- 5f+2) ln N for large p. 
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By means of this expression and equation (2.7a), the star exponent is obtained 

C = p [ 1 - U ( f' - 3f) In NI 
= "-"'(f2-3f) = "7-1 y = 1 -f( f - 3) E /  16 for stars 

(2.13) 

as expected. 
Another example of evaluation of macroscopic properties from the probability 

distribution P{R, ,} ,  equation ( l . l ) ,  is the number U of configurations 0 with the 
backbone forming a ring. In a diagrammatic language, U up to first order in U can 
be written as 

U = p 7 ( d / 2 ~ 1 ~ ) ~ / '  [ 0 -U( 2 8 +2f o-;>--- 
+ 2  0.'; + 0:): )] U = ( d / 2 ~ l ' ) ~ / / ' u '  

'\ 

with the diagrams having the forms 

0 = l/Nf(,' 

8 = [ Nhh di  / Nhh d j  l / [ ( j  - i)( Nbb - j  + i)]d'2 
0 I 

Nhr  Nhr o-;-,--- = (1/ Nf,/') Io di 5 d j  l / ( j  - i)d'2 
.I 

r 

(2.14) 

( 2 . 1 5 ~ )  

(2.15 b) 

( 2 . 1 5 ~ )  

0; = 2  f Iomu di  IoNhrd j  1/[i j+(Nbb-i)(j+i)]d '2 (2.15d) 
m = l  

a:!, = f 5"di I N h ' d j  1/[Nbb(i+j)+1111--lff(Nbb-lm-nlff)]d'2. 
m = l  n = l  0 0 

m f n  
(2.15e) 

The last two diagrams are isomorphic with the diagram e used before (Kosmas 
1982) which has the form 1/(1112+1113+ 1213)d'2 with I , ,  I, and l3 the three lengths joint 
at the two points. The values of the diagrams found after the performance of the 
integrals are shown in table 1. In the appendix the evaluation of the diagram 0: is 
given as an example. By means of the values of the diagrams, U obtains the form 

U = /.L "(d/2Tl2Nbb)"*{1 - u[2(f+ 2) In N b b +  Fu(A p ) ] }  ( 2 . 1 6 ~ )  

with 

F , ( J ~ ) =  -2f1n p + ( 4 f / d i T l &  In[(--1)/(-+1)] 

x[A(f+l)-A']). (2.16b) 
In the limit of large molecular weights where In N b b  >> Fu(f; p ) ,  the latter can be ignored 
and U becomes a power law of the form 

- ~-(d/2)-"*2(f+2) bb - N t b  p -2+ ( ~ / 2 )  - ( ~ / 8 ) ( f + 2 ) .  (2.17) 
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The exponent j? is another characteristic exponent of combs and decreases with the 
increase of the number f of branches, expressing the increasing difficulty of the 
backbone to close as the amount of repulsion from more branches increases. For p + 0, 
lnp+-In Nbb so that F , ( f , p )  goes to F, ( f ,p )=-2 f lnp+4fInp=-2f lnNbb.  In 
this limit the linear chain behaviour U - Ni;”( 1 -4u In Nbb)  - Nb;5+(E/4) is obtained. 
For p = f and f =  1 U becomes equal to the U12 of stars off  = 3 (Vlahos and Kosmas 
1984) giving another check on the validity of equation (2.16). 

3. The mean end-to-end square distances of the backbone and the branches 

The backbone is one of the two characteristic parts of the comb and the study of its 
size as a function o f f  and p reveals the conditions under which the backbone is 
stretched or coiled. The mean end-to-end square distance of the backbone (R2)bb 

expresses the square of its size and in terms of the probability P{Rmi} ,  equation ( l . l ) ,  
can be written as 

(3.1) 

where Rib is the end-to-end square distance of the backbone for each configuration. 
If we use the expansion (2.2) in equation (3.1), U‘ appears both in the numerator and 
the denominator. To first order in U’, this ratio is equivalent to a difference of two 
terms coming from the numerator and the denominator respectively. It can be written 
as 

(R’)bb=(R:b)O-U’( nddRmiPo{RmiIRkCCCC m n  i j a d ( R m i - R n j )  

(3.2) 

The summations are the same for the two terms and diagrams including both terms 
can be defined. Equation (3.2) becomes 

7 Rbb 2 +2  

(3.3) 
U = u ’ ( d / 2 ~ 1 ~ ) ~ / ’  (Rib)o= N b b  

where the diagrams with Rib  subscripts express the backbone mean end-to-end square 
distance (R2)bb for the configurations denoted by the diagrams. In the diagram T ~ ; ~  
two backbone points are connected, in the diagram -R;b a branch and the backbone 
intersect while in the diagram 2 R;b the two connected points come from two 
different branches. Their forms can be found by means of equation (3.2) which includes 
the difference of two terms. Performing the integrations over the Rmi a simple rule 
comes out which permits the evaluation of the forms of the diagrams as -(length of 
the backbone in the loop)’/(length of 1oop)(d’2)+1. For the diagram T ~ ; ~  the length 
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of the backbone in the loop is the same with the loop and it is equal to ( j  - i ) .  The 
diagram can be written as 

( 3 . 4 ~ )  

/ - ~ \ ,  

For the diagrams aR;b and iL the lengths of the backbone in the loops are 
j and In - mla, respectively, while the lengths of the loops are ( i  + j) and ( i  + j  + In - 
mla)  respectively. They can be written as 

(3.4b) 

;’\: 
L R i b =  - f Nbr di  1 Nbr dj( n - m)2a  ’/[ i + j + In - m (3.4c) 

m = I # n = l  0 0 

and their values are found and listed in table 1 .  By means of equation (3.3) and the 
values of the diagrams the mean end-to-end square distance of the backbone becomes 

with 

f 
+4p  f [ f+2p( f+  1)1/[2+ m / p ( f +  1 ) 1 + 4 ~  c Wl+ m / p ( f +  113. 

m = l  m = l  

(3.5b) 

In the limit of large backbone lengths N b b  and when In N b b  >> &(f, p )  the latter can 
be ignored and (R2)bb= + 2 u  In N b b )  becomes a power law of the form (R2)bb= 
NE;. The exponent v can be found from the U dependence of (R’jbb and the universal 
fixed point value u * = & / 1 6  as ( R 2 ) b b = N ~ ~ 2 u * = N E ; ; j Y = t + u * = t + ( & / 1 6 )  and 
coincides with the exponent Y of linear chains (de Gennes 1972, Kosmas 1982). (RZ)bb, 
(equation ( 3 . 5 ~ ) ) ~  which shows whether the backbone is extended or not increases as 
& , ( A  p )  increases. Plots of Fbb(f; p )  are given in figure 2 f o r f =  1,  5 ,  10, 15, 20 and 
25 as a function of lnp. What we see from these figures is that on increasing p, by 
increasing the branch length Nbr, the extension of the backbone increases until a 
limiting value is reached which depends on J: The interpretation of this behaviour can 
be made taking account the interactions between the branches and the backbone. The 
presence of the branches leads to an expansion of the backbone which is larger for 
larger masses of branches in the vicinity of the backbone. On increasing p by increasing 
the length Nbr of the branches the mass of the branches close to the backbone increases 
and therefore the expansion of the backbone increases. Increasing p further the 
branches extend away from the backbone and they cannot influence it any more. In 
this region the limiting behaviour of F b b  is reached. The limiting values of F b b  for 
p + can be found from equation (3.5b). They are 

and show how the increase off  increases the limiting extension of the backbone. 
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In P 

Figure 2. The function Fbb(f;p) which determines the extension of the backbone as a 
function of In p for f =  1, 5, 10, 15, 20 and 25. 

The mean end-to-end square distance (R2)br,k of the kth branch (k = 1,2,. . . ,f) 
can be defined in terms of the probability distribution P{Rmi}, equation ( l . l ) ,  as 

where Rir,k is the end-to-end square distance of the kth branch for each configuration. 
Employing equation (2.2), we take 

(R2)br,k = (Rir.k)O- U'( I n ddRmi po{ki}Rk,k C ad(Rmi -Rnj) 
m n  i j 

-1 n ddRmiPo{RmiIRL,k nddRmiPo{RmiICCCC m n  i j sd(Rmi-Rnj))* 

(3.8) 

Defining diagrams to include both terms of equation (3.8), the mean end-to-end square 
distance of the branch becomes 

(3.9) 

,'--\ ;'\: 
(R2)br,k =(Rk,k)O- .( - - y z r - - R i r ~ k  + 2  - RZ,,k + 2  A R&.k 

(R;r,k)O= N b r .  

After the performance of the integrations of equation (3.8), the forms of the diagrams 
come out to be 

(3.10a) 
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(3.10b) 

and 

(3 .10~)  

and obey the general rule of being equal to -(length of the k branch in the loop)*/(length 
of the 10op) '~~* '+~ .  The values of the diagrams are shown in table 1 and using them 
in equation (3.9) we obtain for the mean end-to-end square distance of the kth branch 
the expression 

(R;r ,k)  = Nbr{l + In Nbr+ Fbr,k(f, p)]} ( 3 . 1 1 ~ )  

with 

Fbr,k(f ,  p )  = - 4 + { p ( f +  ) / [ ( p  + )(f+ - k ) } + p ( f +  )/[p(f+ + k1 
- [ 2 / p ( f +  l)l(f+ 1 - k )  W ( f +  1 - k ) / [ ( p  + 1) ( f+  1) - k l l  
- [ 2 k / p ( f +  111 W k / [ p ( f +  I ) +  k l l  

- c (-~(f+l)/[2~(f+l)+I~-~ll+~(f+l)/[~(f+l)+I~-~ll 
+ N p ( f +  U + l m  - k l l / P ( f +  111 l n M f +  1) 

+ Im - kl l / (2P(f+  1) + 1111 - kl)} 

f 

m = I # k  

- k l /P ( f+  1)1 ln[(lm - kl) / [p(f+ I ) +  Im - kll)). (3.11b) 

From this analytic expression we choose and plot Fbr as a function of In p for all 
k o f f  from 1 to 5 in figure 3, and for the end and middle branches for f =  5, 10, 15 

Figure 3. The function Fbr,k(f; p )  which determines the extension of the branches as a 
function of In p, for all k of I= 1, 2, 3, 4 and 5 .  
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and 20 in figure 4. Larger values of Fbr,k mean a larger extension of the kth branch. 
The influence of the backbone on the branches can be seen in figure 3 from the study 
of the case f = 1 of a single branch. On increasing p by decreasing the backbone length 
N b b ,  F b r  decreases which means that the extension of the branch decreases. This 
decrease reaches a limiting value for large p where the mass of the branch starts being 
away from the reducing backbone. The influence of the other branches on a specific 
branch is of an opposite nature to that of the backbone on the branch. Increasing p, 
the part of Fbr of a branch coming from the interactions of the other branches increases, 
showing that the influence of the other branches is to increase the extension of a 
branch. These two competitive effects can be seen even in the case f =  2, (figure 3).  
The decrease of F b r  in this case is less than that of the case f =  1 and this happens 
because of the presence of the second branch which, tending to extend the first branch, 
lessens the predominant effect of the backbone. In the case f =  3 two different kinds 
of branches exist, the end branches with k = 1 and the central branch with k = 2. In 
this case the effects of the two end branches on the central one appear explicitly in 
figure 3. An increase of Fbr.2 is observed in the beginning where the effects from the 
end branches overcome that of the backbone, a maximum is reached where the two 
opposite effects cancel and then a decrease starts where the effect of the backbone 
dominates. For f a  4 the effects of the branches dominate and an increase of F b r  as a 
function of p is observed except an imperceptible decrease for the two end branches 
(f= 1) on which the effects of the other branches are slightly weaker. From figures 
3 and 4, comparing the extension of the internal branches with those of the externals, 
we see that the internal ones extend more. The reason for this is that the internal 
branches, because of their symmetrical position, interact more with the other branches. 
In the limit p + 0 where the backbone becomes of infinite length, Fbr,k tends to the 
same limit for all k, showing that in the limit of infinite backbone length the 

Ln 9 

Figure 4. The function FbrJf. p )  of the end and middle branches fo r f=  5, 10, 15 and 20. 
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branches become equivalent. In the other limit of a star, p + CO, all the branches again 
become equivalent having the same Fbr for each case of f  (figures 3 and 4). 

4. Conclusions 

The conformational properties of regular comb polymers have been studied at the 
critical dimensionality d = 4 by means of first-order perturbation theory in the excluded 
volume parameter U. The critical characteristic exponents of combs for the total number 
of configurations C and the number U of configurations with the backbone forming 
a ring have been determined to order E.  The exponents of these two quantities decrease 
linearly as the number f of the branches of the comb increases, which expresses a 
freezing of the macromolecule. This freezing is less than the corresponding freezing 
of stars of larger compactness for which the corresponding exponents decrease as f. 
The critical exponent v which characterises the sizes of parts of the macromolecule 
in the limit of infinite lengths is the same as that of linear chains. In finite chains the 
presence of the branches extend the backbone and a specific branch more. The 
backbone on the other hand, decreases the extension of the branches. These results 
found from first-order E calculations describe an overall solution to the problem at 
the fictitious dimensionality d = 4 - E. The value of the exponents and the prefactors 
admit small corrections from higher-order calculations, but the general trends in the 
behaviour of the comb are well described by the non-ideal solution at d = 4 - E ( E  small). 

The present work should stimulate further studies on comb polymers. Synthesis 
of model combs with varying p andf will test the above results experimentally. Further 
studies with enumeration techniques will be able to check the properties of the 
macromolecule and the transition from linear-like to star-like behaviour of combs with 
increasing p = Nbr/ Nbb. 
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Appendix 

In this appendix we demonstrate the evaluation of three characteristic diagrams, the 
diagram 3 of ,- . C, equation (2.6d), the diagram a.! of U, equation (2.15d), and 
the diagram 

Starting from equation (2.6d) and converting the double summation into a single 
one over the variable A = rn - n we take for the first diagram 

of (R2)bb, equation (3.46), for d = 4. 

r Nbr Nbr 

;;*‘’>, = 2  ( f - A )  di  lo d j  l / ( j + i + A a ) *  
h = l  

which is the value quoted in table 1. 
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The 2 in front of the summation in the diagram Cl) (equation (2.15d)) accounts 
for the fact that the i integration on the ring between 0 and ma (the position of the 
branch) and between ma and the end of the ring give identical results. The j  integration 
is performed first: 

The m dependence disappears in equation (A3) because all positions on the ring are 
equivalent, so that the result of table 1 is taken. 

we start from equation (3.4b), with 
d =4. The i integration is done first and we take 

,e-.. 

For the evaluation of the diagram 

m = l  J o  

The j integration is trivial and the result is 
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